In Moltalk was een overzicht van de rijtjes te zien waarbij ze een aantal niet getoonde verdenkingen hadden berekend n.a.v. de eindrangschikking. Onder het motto 'vertrouwen is goed, controleren beter' heb ik ook maar eens een berekening uitgevoerd.
lsdr: de conclusie van Moltalk was juist en de pijltjes tussen de kandidaten die nog verwisseld zouden kunnen worden kunnen eigenlijk wel weg.
We geven een kandidaat 0, 1, 2 of 3 molpunten al naar gelang hoe verdacht ze zijn (0 = minst verdacht).
Het totaal aantal punten van de kandidaten op volgorde van minst naar meest verdacht:
Sor = 1 of 2 (= x) van Anna + 0 van Fons + 0 van Kees + 0 van Rian = x
Rian = 0 van Anna + 1 van Fons + 3 van Kees + 0 van Sor = 4
Kees = (3 - x) van Anna + 2 van Kees + 3 van Rian + 1, 2 of 3 van Sor (a) = 8 + a - x
Anna = 3 van Fons + 1 of 2 van Kees (y) + 1 van Rian + 1, 2 of 3 van Sor (b) = 4 + y + b
Fons = 3 van Anna + 3 - y van Kees + 2 van Rian + 1, 2, of 3 van Sor (c) = 8 + c - y
De punten van Kees liggen tussen 7 (a=1, x=2) en 10 (a=3, x=1)
De punten van Anna liggen tussen 6 (y=1, b=1) en 9 (y=2, b=3)
De punten van Fons liggen tussen 7 (c=1, y=2) en 10 (c=3, y=1)
Als we geen gelijke scores toestaan (dan had Rik dit moeten zeggen) dan kan Kees alleen 7 of 8 punten hebben (anders zou Fons 11 punten moeten hebben).
Als Kees 8 punten heeft dan moet Anna er 9 hebben en Fons 10.
Anna 9 betekent 4 + y + b = 9; b is max 3, dan moet y=2 zijn en b=3
Fons 10 betekent 8 + c - y = 10; met y=2 krijgen we c=4 en dit kan niet (c=1, 2 of 3)
Dus Kees heeft 7 punten. We houden dan de volgende mogelijkheden over:
Kees = 7, Anna = 8, Fons = 9 of 10 (mogelijkheid A)
Kees = 7, Anna = 9, Fons = 10 (mogelijkheid B)
Kees = 7 betekent a=1 en x=2.
a=1 betekent lijstje Sor: Rian, Kees, Fons/Anna, Anna/Fons
x=2 betekent lijstje Anna: Rian, Kees, Sor, Fons
Mogelijkheid A)
4 + y + b = 8
8 - y + c = 9 of 8 - y + c = 10
==> y=1, b=3, c=2 (want b ongelijk c)
of y=2, b=2, c=3
Mogelijkheid B)
4 + y + b = 9 (1)
8 - y + c = 10 (2)
Deze mogelijkheid kan niet want (2) betekent y=1 want c <= 3 en dan volgt uit (1) b=4 en dit kan niet.
Voor de lijstje van Kees en Sor zijn er dan maar 2 mogelijkheden:
Kees: Sor, Anna, Fons, Rian (y=1)
Sor: Rian, Kees, Fons, Anna
of
Kees: Sor, Fons, Anna, Rian (y=2)
Sor: Rian, Kees, Anna, Fons
Aangezien Kees bij de test zegt dat hij Anna niet verdenkt, kunnen we met aan zekerheid grenzende waarschijnlijkheid zeggen dat Sor Anna het meest verdacht vindt. Hij zegt in de test dat hij all-in op één kandidaat is gegaan en dat zou dus Anna moeten zijn.
Voor de volledigheid ook nog maar even de overige (bekende) lijstjes:
Fons: Sor, Rian, Kees, Anna
Rian: Sor, Anna, Fons, Kees